
Universal solutions for the classical dynamical Yang–Baxter equation and the Maurer–Cartan

equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 453

(http://iopscience.iop.org/0305-4470/37/2/014)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 02/06/2010 at 18:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 453–468 PII: S0305-4470(04)64781-0

Universal solutions for the classical dynamical
Yang–Baxter equation and the Maurer–Cartan
equations*

Emanuela Petracci
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Abstract
Using functional equations we solve the Maurer–Cartan equations and a special
version of the classical dynamical Yang–Baxter equation (vCDYBE). Our
solutions are valid for any Lie algebra over a base ring containing Q, and
in the case of vCDYBE for any quadratic Lie algebra. Our method applies also
to Lie superalgebras.

PACS numbers: 02.20.Sv, 02.30.Ik, 02.40.Hw

1. Introduction

Let g be a finite-dimensional, real (or complex) Lie algebra. With any subalgebra h ⊆ g

and ε ∈ R (or C) is associated a classical dynamical Yang–Baxter equation (CDYBE) with
coupling constant ε (see, for example, [6]). This equation is important in mathematics and
physics (see, for example, [2]).

In [1] Alekseev and Meinrenken consider the case h = g and g a Lie algebra equipped with
an invariant, non-degenerate, symmetric bilinear form (such a Lie algebra is called quadratic).
They show that when g is a compact Lie algebra, the analytic function

f (t) = −1

t
+

1

2
coth

(
t

2

)
(1)

provides a solution for CDYBE with ε = 1
4 . This solution is called the Alekseev–Meinrenken

dynamical r-matrix.

* This research was done during a visit to the ‘Institut de Mathématiques de Jussieu’ in Paris, and completed during
a visit—supported by the Swiss National Science Foundation—to the ‘Section de Mathématiques’ of the University
of Geneva.
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Here we show that f (t) provides a solution when g is any quadratic Lie superalgebra.
In fact, when g = h and g is quadratic, CDYBE is equivalent to equation (21) which we
call vCDYBE. It is an equation involving formal differential 3-forms on g, and it is defined
for any Lie superalgebra over a superring K = K0 ⊕ K1 equipped with an even, invariant,
bilinear form γ (we do not suppose that γ is non-degenerate or symmetric, nor that g is finitely
generated). We show that each odd formal power series f ∈ K0[[t]] verifying

f (u + t) − f (u)

t
+

f (u + v) − f (v)

u
+

f (v + t) − f (t)

v
+

f (u + t) − f (t)

u

+
f (v + u) − f (u)

v
+

f (t + v) − f (v)

t
= 2(f (t)f (u) + f (u)f (v) + f (v)f (t) + ε) modulo u + t + v (2)

gives a solution of vCDYBE. When K ⊇ Q and ε = 1
4 , (1) is the unique odd solution of (2).

In [7] Fehér and Pusztai give, for an ordinary Lie algebra, another direct proof of the fact
that f is a solution of vCDYBE. If we put v = −t − u in (2), we get the functional equation
used in [7]. Even in the case of Lie algebras, our proof is more elementary, it reduces to the
definition of a Lie (super)algebra (and, in particular, to Jacobi’s identity (9)).

We show that vCDYBE has strong similarities with Maurer–Cartan equations.
Let K = K0 ⊕ K1 be a commutative superring containing 1

2 , and g a Lie superalgebra
over K. We consider a formal differential 1-form α̃ on g with values in g, and we denote by
dα̃ its de Rham differential. One of the Maurer–Cartan equations is

dα̃ = 1
2 [α̃, α̃]. (3)

We show that each formal power series f ∈ K0[[t]] verifying

f (u + t) − f (u)

t
+

f (u + t) − f (t)

u
= f (u)f (t)

provides a solution of equation (3). When f (0) = 1 this solution is called a Maurer–Cartan
form. In this case, a solution exists only when K ⊇ Q, and in this situation, there exists a
unique solution given by f (t) = et−1

t
.

Maurer–Cartan equations are important in the theory of Lie groups. For example, they
may be used to prove the third Lie theorem (see remark 5.1). Variations of Maurer–Cartan
equations now occur in many places, as in the deformation theory and in the Weiss–Zumino–
Novikov–Witten model.

This paper is organized as follows. We consider arbitrary Lie superalgebras over
an arbitrary commutative superring containing 1

2 . To introduce Maurer–Cartan equations
(section 5) and vCDYBE (section 6.2) we need the notion of formal differential form on
such a Lie superalgebra. In section 2 we define the notion of formal differential form on a
Z/2Z-graded module and its de Rham complex, and in section 3 we define a Lie superalgebra.
To solve our equations we use the formulae in section 4. To get these formulae we need some
tools on Lie superalgebras that are described in section 3. In section 6.2 we also explain the
relation between vCDYBE and CDYBE.

2. Modules over a superring

2.1. Generalities

We recall the basic definitions and examples which we will use to define a differential form.
They are from super linear algebra (see, for example, [8]).



Universal solutions for the classical dynamical Yang–Baxter equation and the Maurer–Cartan equations 455

We say that K is a superring if it is a unitary ring graded over Z/2Z. For each non-zero
homogeneous element a ∈ K we denote by p(a) its degree. We say that a is even if p(a) = 0,
and that a is odd if p(a) = 1.

The superring K is called commutative if ab = (−1)p(a)p(b)ba for all homogeneous and
non-zero a, b ∈ K; and a2 = 0 when a is odd.

Convention 2.1. Each time we use the symbol p(a) for an element a of a Z/2Z-graded group
occurring in a linear expression, it is implicitly assumed that it is non-zero and homogeneous.
Moreover, the expression is extended by linearity. For example, the expression above will be
written as ab = (−1)p(b)p(a)ba for any a, b ∈ K.

Each time we consider a graded group M, we denote by M0 and M1 the subgroups
composed of elements with even and odd degree.

From now to the end of this text, K will be a commutative superring.

Definition 2.1. A commutative group (M, +) graded over Z/2Z is a K-module if it is
equipped with a bilinear application M × K → M , such that (mα)β = m(αβ) and
p(mα) = p(m) + p(α), for any α, β ∈ K and m, n ∈ M .

If K is a field, M is also called a K-supervector space.

Definition 2.2. Let M,N be two K-modules. A map F : M → N is a morphism of K-modules
if F(mα) = F(m)α for any m ∈ M and α ∈ K. We also say that F is K-linear.

We denote by Hom(M,N) the group of functions F : M → N which are morphisms
of K-modules. It is graded over Z/2Z in the following way: F is even if F(M0) ⊆ N0 and
F(M1) ⊆ N1, and F is odd if F(M0) ⊆ N1 and F(M1) ⊆ N0.

Hom(M,N) is a K-module: for any F ∈ Hom(M,N) and α ∈ K we have
Fα : M � v �→ (−1)p(v)p(α)F (v)α ∈ N .

Notation 2.1. We denote by M∗ the K-module Hom(M, K).

Definition 2.3. We say that A is a K-superalgebra if it is a K-module equipped with a
distributive application A × A

·→ A such that p(a · b) = p(a) + p(b) and (a · b)α =
a · (bα) = (−1)p(b)p(α)(aα) · b, for any a, b ∈ A and α ∈ K.

We say that the K-superalgebra A is commutative if a ·b = (−1)p(a)p(b)b ·a for a, b ∈ A;
and c2 = 0 for any c ∈ A1.

Let M,N be two K-modules. We denote by M ⊗ N the K-module generated by
{v ⊗ w; v ∈ M,w ∈ N} with relations

(v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(v ⊗ w)α = v ⊗ wα = (−1)p(w)p(α)vα ⊗ w ∀α ∈ K

and graduation p(v ⊗ w) = p(v) + p(w).
The tensor algebra of M is defined as T (M) := K + M + (M ⊗M) + (M ⊗M ⊗M) + · · ·,

with product (v1 ⊗ · · · ⊗ vi) · (vi+1 ⊗ · · · ⊗ vn) = v1 ⊗ · · · ⊗ vn, for all i, n ∈ N. It is an
associative K-superalgebra.

The symmetric algebra S(M) of M is defined as the quotient S(M) := T (M)/I , where I
is the ideal generated by

{v ⊗ w − (−1)p(v)p(w)w ⊗ v, u ⊗ u|v,w ∈ M,u ∈ M1}.
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It is a commutative and associative K-superalgebra. Moreover, it has the decomposition
S(M) = K ⊕ ⊕∞

n=1 Sn(M), where Sn(M) is the K-module generated by products of n
elements of M.

Definition 2.4. Let A and B be two K-superalgebras. An even map F ∈ Hom(A,B)0 is said
to be a morphism of K-superalgebras if F(ab) = F(a)F (b) for any a, b ∈ A.

Let n � 2, and γ ∈ Hom(

n︷ ︸︸ ︷
M ⊗ · · · ⊗ M,N). It is called a multilinear form (or n-

linear form) on M with values in N. We write γ (a1 ⊗ · · · ⊗ an) = γ (a1, . . . , an) for any
a1, . . . , an ∈ M , identifying γ with a multilinear function on M × · · · × M︸ ︷︷ ︸

n

with values in N.

Definition 2.5. We say that γ is symmetric if

γ (a1, . . . , ai, ai+1, . . . , an) = (−1)p(ai )p(ai+1)γ (a1, . . . , ai+1, ai, . . . , an)

for any i = 1, . . . , n − 1,

and

γ (a1, . . . , ai, ai, . . . , an) = 0 if p(ai) = 1 for any i = 1, . . . , n.

Since Sn(M) is a quotient of

n︷ ︸︸ ︷
M ⊗ · · · ⊗ M , this identifies Hom(Sn(M),N) with the

space of symmetric multilinear functions on M × · · · × M︸ ︷︷ ︸
n

with values in N.

2.2. Formal functions and extensions of scalars

The following examples and notation are fundamental in this text.
Let M be a K-module. We introduce the morphism of K-superalgebras �M : S(M) →

S(M) ⊗ S(M) such that M � v �→ v ⊗ 1 + 1 ⊗ v; it is called the natural coproduct of
S(M). It is a commutative coproduct: if w ∈ S(M) and �M(w) = ∑

i wi ⊗ w′
i , we have∑

i wi ⊗ w′
i = ∑

i (−1)p(w′
i )p(wi)w′

i ⊗ wi . Moreover, it is associative:

(idS(M) ⊗ �M) ◦ �M = (�M ⊗ idS(M)) ◦ �M.

Let p ∈ N and v1, . . . , vp ∈ M . For any permutation (i1, . . . , ip) of {1, . . . , p} we denote by
sig

(
vi1 , . . . , vip

) ∈ {1,−1} the sign such that

sig
(
vi1 , . . . , vip

)
vi1 · · · vip = v1 · · · vp

in S(M). We have

�M(v1 · · · vp) =
p∑

j=0

∑
1�i1<···<ij �p

σ (v, i)vi1 · · · vij ⊗ v1 · · · v̂i1 · · · v̂ij · · · vp

where the symbols exhibiting a superimposed ‘hat’ are omitted, and σ(v, i) :=
sig

(
vi1 , . . . , vij , v1, . . . , v̂i1 , . . . , v̂ij , . . . , vp

)
.

Example 2.1. Let N be a K-module. In Hom(S(M),N) the coproduct �M allows us to define
the multiplication by an element of S(M)∗ by the formula

Fϕ = (F ⊗ ϕ) ◦ �M for F ∈ Hom(S(M),N), ϕ ∈ S(M)∗.
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In particular, S(M)∗ is an associative K-superalgebra, called the algebra of formal functions
on M, and Hom(S(M),N) is a S(M)∗-module, called the space of formal functions on M with
values in N.

When N = M,F ∈ Hom(S(M),M) is called a formal vector field on M.

Remark 2.1. With w ∈ N we associate the morphism of K-modules S(M) → N such that
1 �→ w, Sn(M) �→ {0} if n �= 0. We consider it as the constant map on M with value w. We
still denote this map by w. This provides a natural injection N ⊆ Hom(S(M),N).

Remark 2.2. By the previous remark, there is a natural morphism of S(M)∗-modules of
S(M)∗ ⊗N in Hom(S(M),N), which is in general not injective and not surjective. The image
could be called the space of polynomial functions on M with values in N.

Traditionally, the extension of scalars from K to S(M)∗ for N is the space S(M)∗ ⊗ N .
In this paper, the space Hom(S(M),N) is more useful, and we consider it also as

an extension of scalars from K to S(M)∗. In practice, a K-linear statement about K-
modules N1, N2, . . . will extend to a S(M)∗-linear statement about S(M)∗ ⊗ N1, S(M)∗ ⊗
N2, . . . , Hom(S(M),N1), Hom(S(M),N2), . . . , with natural S(M)∗-morphisms S(M)∗ ⊗
Nj → Hom(S(M),Nj ).

Example 2.2. Let N1, N2, N,M be K-modules, and φ : N1 ⊗ N2 → N a bilinear map. For
F ∈ Hom(S(M),N1),G ∈ Hom(S(M),N2), we define

φ(F,G) = φ ◦ (F ⊗ G) ◦ �M.

Then φ is a S(M)∗-bilinear map from Hom(S(M),N1)⊗ Hom(S(M),N2) to Hom(S(M),N).
There is a similar definition with any finite number of modules N1, . . . , Nn, n � 2.
Similarly, if φ = φ(a1, . . . , an) is a K-multilinear form on N with

values in K, then φ extends in a natural way to a S(M)∗-multilinear form
Hom(S(M),N) ⊗ · · · ⊗ Hom(S(M),N)︸ ︷︷ ︸

n

→ S(M)∗.

Remark 2.3. In particular, if N has a K-superalgebra structure given by φ ∈ Hom(N ⊗N,N),
then Hom(S(M),N) is a S(M)∗-superalgebra.

Definition 2.6. Let N be a K-module. For any formal vector field ϕ ∈ Hom(S(M),M) and
F ∈ Hom(S(M),N), we introduce

L(ϕ)(F ) := (−1)p(ϕ)p(F )F ◦ MultS(M) ◦ (idS(M) ⊗ ϕ) ◦ �M. (4)

It belongs to Hom(S(M),N), and it is called the derivative of F in the direction of ϕ. If N is
a superalgebra L(ϕ) satisfies the Leibniz rule.

Remark 2.4. Let ϕ,ψ ∈ Hom(S(M),M). We have the usual formula for the bracket of
derivatives in the direction of vector fields:

L(ϕ) ◦ L(ψ) − (−1)p(ψ)p(ϕ)L(ψ) ◦ L(ϕ) = L
(
L(ϕ)(ψ) − (−1)p(ψ)p(ϕ)L(ψ)(ϕ)

)
.
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2.3. Formal differential forms over a module

Let M be a K-module. To introduce the notion of differential form over M we need the
following definition.

Definition 2.7. We denote by 
M the K-module with graduation (
M)0 = M1 and
(
M)1 = M0. The identity over M gives an odd map π ∈ Hom(M,
M)1. The structure of
the K-module for 
M is given by

(πm)α := π(mα) ∀m ∈ M, ∀α ∈ K.

Let N be a K-module.

Definition 2.8. Let n ∈ N. A formal differential n-form over M and with values in N is an
element of

An(M,N) := Hom(Sn(
M) ⊗ S(M),N).

The space of formal differential forms is A(M,N) := ⊕∞
n=0 An(M,N).

We write A(M) = ⊕∞
n=0 An(M) for A(M, K). Note that A0(M,N) = Hom(S(M),N)

is the space of formal functions on M with values in N.
From now on we will omit the word ‘formal’ and we will speak of differential forms.

Remark 2.5. S(
M ⊕ M) = S(
M) ⊗ S(M).

So, we could also consider the larger space of (non-graded) differential forms
Hom(S(
M ⊕ M),N). Clearly A(M) is a subalgebra of S(
M ⊕ M)∗, graded by the
spaces An(M): if αn ∈ An(M) and βp ∈ Ap(M), we have αnβp ∈ An+p(M). In the same
way, A(M,N) is a graded A(M)-module.

Example 2.3. Let n = p = 1. For any w ∈ S(M) we use the notation �M(w) = ∑
i wi ⊗w′

i .
The differential 2-form α1β1 verifies

α1β1(πmπn ⊗ w) =
∑

i

α1(πm ⊗ wi)β1(πn ⊗ w′
i )(−1)p(β1)p(πm+wi)+p(πn)p(wi)

+
∑

i

(−1)p(πm)p(πn)α1(πn ⊗ wi)β1(πm ⊗ w′
i )(−1)p(β1)p(πn+wi)+p(πm)p(wi)

for any m, n ∈ M .

If β ∈ A(M,
M ⊕ M) is a (graded) vector field on 
M ⊕ M , then the derivative
L(β) (see definition 2.6) acts in A(M,N). For example, L(ϕ)(α) is defined for any
α ∈ A(M,N) and ϕ ∈ Hom(S(M),M), and L(ϕ)(An(M,N)) ⊂ An(M,N). In particular,
if n ∈ N, a ∈ M and αn ∈ An(M,N),L(a)(αn) is the differential n-form such that, for any
πm1 · · · πmn ∈ Sn(
M) and w ∈ S(M), we have

L(a)(αn)(πm1 · · · πmn ⊗ w) = (−1)p(a)(p(αn)+p(πm1+···+πmn))αn(πm1 · · · πmn ⊗ aw).

It is called the Lie derivative of αn in the direction a. We also introduce

i(ϕ)(α) := L(π ◦ ϕ)(α).

It is called the contraction of α with ϕ. Let n � 1, αn ∈ An(M,N). We have
i(ϕ)(αn) ∈ An−1(M,N). In particular, if a ∈ M , for any πm1, . . . , πmn ∈ 
M we have

i(a)(α)(πm1 · · · πmn−1 ⊗ ·) = (−1)p(πa)p(α)α(πaπm1 · · · πmn ⊗ ·).
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By induction we get that

i(a1) · · · i(an)(αn) = (−1)p(αn)p(πa1+···+πan)αn(πa1 · · · πan ⊗ ·) ∈ Hom(S(M),N) (5)

for all a1, . . . , an ∈ g.
To build differential forms, we will use sometimes the following lemma.

Let n � 2 and γ :

n︷ ︸︸ ︷
M ⊗ · · · ⊗ M → N be a multilinear form.

Definition 2.9. We say that γ is antisymmetric if

γ (a1, . . . , ai, ai+1, . . . , an) = −(−1)p(ai )p(ai+1)γ (a1, . . . , ai+1, ai, . . . , an)

for any i = 1, . . . , n − 1

and

γ (a1, . . . , ai, ai, . . . , an) = 0 if p(ai) = 0, for any i = 1, . . . , n.

Lemma 2.1. If γ is antisymmetric, there exists a unique γ̃ ∈ Hom(Sn(
M),N) such that

γ̃ (πa1 · · · πan) = (−1)p(an−1)+p(an−3)+···γ (a1, . . . , an)

for any a1, . . . , an ∈ g. The degree of γ̃ is given by p(γ̃ ) = p(γ ) + n modulo 2.

Remark 2.6. Replacing N by Hom(S(M),N), we obtain the formula

γ̃ (πa1 · · · πan ⊗ ·) = (−1)p(an−1)+p(an−3)+···γ (a1, · · · , an)(·) (6)

which identifies An(M,N) with the space of antisymmetric multilinear functions on
n︷ ︸︸ ︷

M × · · · × M with values in Hom(S(M),N).

Let n � 2, α ∈ An(M,N), a1, . . . , an ∈ M . We use the notation i(a1) · · · i(an)(α) and
α(πa1, . . . , πan). They are related (see formula (5)) by

i(a1) · · · i(an)(α) = (−1)p(α)p(πa1+···+πan)α(πa1, . . . , πan).

We introduce the map δ ∈ Hom(S(M ⊕ 
M),M ⊕ 
M) such that

δ(πm) = m ∀m ∈ M

δ(M) = {0}
δ(Sn(M ⊕ 
M)) = {0} ∀n �= 1.

The de Rham differential of α ∈ A(M,N) is the differential form

dα := −L(δ)(α).

Let n � 1 and αn−1 ∈ An−1(M,N). Its de Rham differential is the differential n-form such
that, for any m1, . . . , mn ∈ M and w ∈ S(M), we have

dαn−1(πm1 · · · πmn ⊗ w)

= (−1)p(αn−1)

n∑
i=1

(−1)iαn−1(πm1 · · · π̂mi · · · πmn ⊗ mi · w)sig( �m, i)

where sig( �m, i) := (−1)p(m1+···+mi−1)+p(mi)p(πmi+1+···+πmn).
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Using remark 2.4 we get the following usual Cartan commutation rules:

d ◦ d = 0

i(ϕ) ◦ L(ψ) − (−1)p(πϕ)p(ψ)L(ψ) ◦ i(ϕ) = −(−1)p(ϕ)p(ψ)i(L(ψ)(ϕ))

∀ϕ,ψ ∈ Hom(S(M),M)

i(ϕ) ◦ i(ψ) = (−1)p(πϕ)p(πψ)i(ψ) ◦ i(ϕ)

d ◦ i(a) − (−1)p(πa)i(a) ◦ d = L(a) ∀a ∈ M

d ◦ L(a) = (−1)p(πa)L(a) ◦ d.

We call A(M,N) the formal de Rham complex on M with values in N.

Remark 2.7. Let α0 ∈ A0(M,N), α1 ∈ A1(M,N), and α2 ∈ A2(M,N). For any a, b, c ∈ M

we have

i(a)(dα0) = (−1)p(a)L(a)(α0)

i(a)i(b)(dα1) = −(−1)p(a)+p(b)L(a)(i(b)(α1)) + (−1)p(a)p(b)L(b)(i(a)(α1))

i(a)i(b)i(c)(dα2) = (−1)p(a+b+c)L(a)(i(b)i(c)(α2)) + (−1)p(c)+p(c)(p(a)+p(b))

×L(c)(i(a)i(b)(α2)) − (−1)p(a)p(b)+p(c)L(b)(i(a)i(c)(α2)).

3. The generic point of a Lie superalgebra

From now on we assume that 1
2 ∈ K0.

We recall the definition of a Lie superalgebra.

Definition 3.1. Let g be a K-superalgebra such that its product [·, ·] : g × g → g verifies

[X, Y ] = −(−1)p(X)p(Y )[Y,X] ∀X, Y ∈ g (7)

[X,X] = 0 ∀X ∈ g0 (8)

[[X, Y ], Z] = [X, [Y,Z]] − (−1)p(Y )p(X)[Y, [X,Z]] ∀X, Y,Z ∈ g (9)

[Y, [Y, Y ]] = 0 ∀Y ∈ g1. (10)

Such a g is called a Lie K-superalgebra.

Remark 3.1. Since 2 ∈ K is invertible (8) follows from (7). If 3 ∈ K is invertible (10) follows
from (7) and (9).

When g = g0 and K = K0 ⊇ Q is a field we have an ordinary Lie algebra. As explained in
[3], if g1 �= {0} and 2 ∈ K is not invertible, definition 3.1 is not the right one, and we avoid
this problem.

Let g be a Lie K-superalgebra. This section is devoted to introducing some preliminary
properties of gx := Hom(S(g), g). For the proofs or for more details see section 3 of [10]. We
recall that g ⊆ gx (see notation in remark 2.1), and that gx has a structure of S(g)∗-superalgebra
(see example 2.2).

Lemma 3.1. gx is a Lie S(g)∗-superalgebra, and g ⊆ gx is a Lie K-subsuperalgebra.
Similarly, A(g, g) is a (graded) Lie A(g)-superalgebra.

Remark 3.2. Let M be any K-module. We remark that Hom(S(M),M) is in duality with the
derivations of S(M)∗. This gives a Lie superalgebra structure on Hom(S(M),M) (coming
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from the bracket of the corresponding derivations). It is K-linear, but not S(M)∗-linear (here
we do not need 1

2 ∈ K0).
In the particular case M = g, this structure is different from the Lie superalgebra structure

in lemma 3.1—which comes from the Lie superalgebra structure on g.

The identity over g is called the generic point of g. It extends to the morphism of K-
modules x : S(g) → g such that Sn(g) �→ {0} if 1 �= n1. In particular, we can consider
[x, a] ∈ gx for any a ∈ g. We use the standard notation

(ad x)(a) := [x, a].

For any n ∈ N, we identify Hom(Sn(g), g) with the subspace of F ∈ Hom(S(g), g)

which is zero on Sm(g), m �= n.

Remark 3.3. For any n ∈ N, we have (ad x)n(a) ∈ Hom(Sn(g), g).

We denote by K0[[t]] the ring of formal power series in t, with coefficients in K0; and by
K0[[t, u]] the ring of formal power series in variables t, u and coefficients in K0.

Let a ∈ g and q(t) = ∑∞
k=0 ckt

k ∈ K0[[t]]. We denote by

qa := q(ad x)(a) ≡ c0a + c1[x, a] + · · · ∈ gx (11)

the formal vector field such that its restriction to Sn(g) is cn(ad x)n(a), for any n � 0.
Let p, q ∈ N and a, b ∈ g. We introduce the notation

(tpuq : [a, b])x := [(ad x)p(a), (ad x)q(b)] ∈ gx

which is extended to any formal power series in t and u.
Let b ∈ g. We recall that the notation L(b) has been introduced in (4).

Theorem 3.1 ([10], theorem 3.2). For any a ∈ g and q ∈ K0[[t]] we have

L(b)(qa) =
(

q(t + u)− q(u)

t
: [b, a]

)
x

.

Theorem 3.2 (see [10], lemma 4.3). Let ω(t, u) ∈ K0[[t, u]]. If for any Lie K-superalgebra
g we have

(ω(t, u), [a, b])x = 0 ∀a, b ∈ g

then ω(t, u) = 0.

4. Universal differential forms on a Lie superalgebra

Let q(t) = ∑∞
k=0 ckt

k ∈ K0[[t]]. With any Lie K-superalgebra g we associate an odd,
g-valued, differential 1-form αg ∈ Hom(
g ⊗ S(g), g)1 = A1(g, g)1 by the formula

i(a)(αg) = (−1)p(a)qa for a ∈ g.

For example, for a, u, v ∈ g we have

αg(πa) = −c0a

αg(πa ⊗ u) = −(−1)p(a)p(u)c1[u, a] (12)

αg(πa ⊗ uv) = (−1)p(a)(p(u)+p(v))c2([u, [v, a]] + (−1)p(u)p(v)[v, [u, a]]).
1 This definition is valid if g is replaced by any K-module.
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The differential form αg is functorial in g in an obvious sense. This is why we call such
a form universal. In fact, as in section 7 of [10], it can be proved that, in the category of
Lie algebras over a commutative Q-algebra, any universal differential form is obtained in this
manner.

We shall need the following formulae, valid for all g.

Lemma 4.1. For any a, b ∈ g we have

i(a)i(b)(dαg) = (−1)p(a)+1

(
q(u + t) − q(u)

t
+

q(u + t) − q(t)

u
: [a, b]

)
x

(13)

1
2 i(a)i(b)([αg, αg]) = (−1)p(a)+1(q(t)q(u) : [a, b])x. (14)

Proof. We consider the first formula. Using remark 2.7 we see that

i(a)i(b)(dαg) = −(−1)p(a)L(a)(qb) + (−1)p(a)p(b)+p(a)L(b)(qa).

Formula (13) follows from theorem 3.1 and from the identity(
q(u + t) − q(u)

t
: [b, a]

)
x

= −(−1)p(a)p(b)

(
q(u + t) − q(t)

u
: [a, b]

)
x

.

Now we consider formula (14). Since i(b) is a derivation, we have i(b)([αg, αg]) =
[i(b)(αg), αg] + (−1)p(b)+1[αg, i(b)(αg)]. Since i(a) is a derivation, and since i(a)i(b)(αg) =
0, we obtain i(a)i(b)([αg, αg]) = 2(−1)p(b)+1[i(a)(αg), i(b)(αg)] = 2(−1)p(a)+1[qa, qb].

�

5. Maurer–Cartan equations

Let g be a Lie K-superalgebra. We call a left invariant (formal) Maurer–Cartan form over g,
each differential odd 1-form ᾱ ∈ Hom(
g ⊗ S(g), g)1 = A1(g, g)1 such that,

(i) for any a ∈ g,

(−1)p(a)i(a)(ᾱ)(1) ≡ −ᾱ(πa) = a

(ii) its de Rham differential dᾱ ∈ A2(g, g)0 verifies the Maurer–Cartan equation

dᾱ = − 1
2 [ᾱ, ᾱ].

In an analogous way we have a notion of right invariant (formal) Maurer–Cartan form
over g. We denote by α̃ such a differential 1-form. The difference with ᾱ is that the de Rham
differential dα̃ verifies another form of the equation of Maurer–Cartan:

dα̃ = 1
2 [α̃, α̃]. (15)

Remark 5.1. Let K = R and g = g0 be a finite-dimensional Lie algebra. If G is a local Lie
group with Lie algebra g, the left and right invariant Maurer–Cartan forms on G satisfy the
Maurer–Cartan equations. Pulling back these forms on g by a local analytic diffeomorphism
from g to G, we get analytic Maurer–Cartan forms defined in a neighbourhood of 0 ∈ g.
Considering their Taylor expansion at the origin, we get formal Maurer–Cartan forms on g.

Conversely, an analytic Maurer–Cartan form defined in a neighbourhood of 0 ∈ g can be
used to prove the third Lie theorem. It states the existence of a local analytic Lie group G with
Lie algebra g, and of a well-defined local analytic diffeomorphism from g to G such that the
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pull back of the left invariant Maurer–Cartan form on G is the given Maurer–Cartan form on
g (see, for example, [11], from which we borrow the notation ᾱ and α̃).

Theorems 5.1 and 5.2 provide analytic Maurer–Cartan forms on g—the ones which are
obtained from the Maurer–Cartan forms on G using the exponential map. We think that our
theorem can be used to simplify the classical exposition of the third Lie theorem and of the
existence of the exponential map.

We think that it is an interesting fact—and, as far as we know, this idea appeared for the
first time in [9]—that the well-known formulae for the derivative of the exponential map from
g to G are related to the functional equations (16) and (17).

We are looking for Maurer–Cartan forms, universal in the sense of section 4. This means
that we are looking for formal series f̄ , f̃ ∈ K0[[t]] such that the corresponding forms, defined
by the formulae

(−1)p(a)i(a)(ᾱg) = f̄ (ad x)(a)

(−1)p(a)i(a)(α̃g) = f̃ (ad x)(a)

are (respectively left and right invariant) Maurer–Cartan forms on g, for all Lie K-
superalgebra g.

Theorem 5.1. Let f̄ ∈ K0[[t]]. Then ᾱg is a left invariant Maurer–Cartan form for all Lie
K-superalgebra if and only if


f̄ (0) = 1

f̄ (u + t)− f̄ (u)

t
+

f̄ (u + t)− f̄ (t)

u
+ f̄ (u)f̄ (t) = 0

(16)

in K0[[t, u]].
Let f̃ ∈ K0[[t]]. Then α̃g is a right invariant Maurer–Cartan form for all Lie K-

superalgebra if and only if


f̃ (0) = 1

f̃ (u + t)− f̃ (u)

t
+

f̃ (u + t)− f̃ (t)

u
− f̃ (u)f̃ (t) = 0

(17)

in K0[[t, u]].

Proof. The fact that (16) and (17) are sufficient follows from (12), (13) and (14). The converse
follows from theorem 3.2. �

Theorem 5.2. Equations (16) have a solution in K0[[t]] if and only if K ⊇ Q. In this case
there exists a unique solution, given by

f̄ (t) := 1 − e−t

t
.

Equations (17) have a solution in K0[[t]] if and only if K ⊇ Q. In this case there exists a
unique solution, given by

f̃ (t) := et − 1

t
.

Proof. Let us prove the assertion for f̃ , the case of f̄ being similar. Assume that there
exists a solution f = 1 +

∑∞
k=1 ckt

k of equations (17). Evaluating at u = 0, we obtain
f (t)−1

t
+ f ′(t) = f (t). This gives

2c1 = 1, (k + 1)ck = ck−1 ∀k � 2.



464 E Petracci

We get c1 = 1
2 . By induction we see that k + 1 is invertible in K for all k � 2, and that

ck = 1
(k+1)! . Thus K ⊇ Q and f (t) = et−1

t
.

Conversely, let us suppose that K ⊇ Q. Then it is easy to verify that f̃ (t) = et−1
t

is a
solution of (17). �

Remark 5.2. Let N � 2, and g be an N-nilpotent Lie superalgebra, that is ad X1◦· · ·◦ad XN =
0 for all X1, . . . , XN ∈ g. Then, assuming that 1, 2, 3, . . . , N are invertible in K0, the truncated
series f̄ modulo tN and f̃ modulo tN provide Maurer–Cartan forms on g.

6. Quadratic Lie superalgebras

6.1. Definitions

Let g be a Lie K-superalgebra. We say that a bilinear form γ : g ⊗ g → K is invariant if
γ (X, [Y,Z]) = γ ([X, Y ], Z) for any X, Y,Z ∈ g.

Lemma 6.1. Let g be equipped with an invariant bilinear form γ : g ⊗ g → K. For all
X ∈ g0 and Y,Z ∈ g we have

γ
(
(ad X)j (Y ), Z

) = γ
(
Y, (−ad X)j (Z)

) ∀j ∈ N.

Proof. The statement follows by induction. �

We say that γ is non-degenerate if g � X �→ γ (X, ·) ∈ Hom(g, K) is one-to-one.

Definition 6.1. Let K = K0 be a field, g0 and g1 be finite-dimensional K-supervector spaces.
If γ is even, symmetric, invariant and non-degenerate, we say that (g, γ ) is a quadratic Lie
K-superalgebra.

6.2. The Alekseev–Meinrenken dynamical r-matrix

Let g be a Lie K-superalgebra equipped with an invariant, even, bilinear form γ : g⊗ g → K.
To write our vCDYBE we need some preliminary notation. Recall (example 2.2) that γ

extends to a S(g)∗-bilinear form on gx . This extension, still denoted by γ , is also invariant.
Let n ∈ N. With a differential form α ∈ An(g, g) we associate α̂ ∈ An+1(g) such that

α̂(πa1, . . . , πan+1)

=
n+1∑
i=1

(−1)p(πai )(p(πa1)+···+p(πai−1))+p(πai )p(α)γ (a1, α(πa1, · · · , π̂ai, · · · , πan+1))

for any a1, . . . , an+1 ∈ g. The degree of α̂ is p(α̂) = p(α) + 1 modulo 2.
Let α ∈ A1(g, g)1 and S ∈ A3(g)1, then dα ∈ A2(g, g)0 and [α, α] ∈ A2(g, g)0. It makes

sense to consider the equation

d̂α − 1
2 [̂α, α] = S.

Remark 6.1. If S = 0 this equation is analogous to the Maurer–Cartan equation in the
version (15).

Let f (t) ∈ K0[[t]]. We recall that f (ad x)(a) ≡ f a, a ∈ g, has been defined in (11): it
is an element of the Lie S(g)∗-superalgebra gx = Hom(S(g), g).
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Let ε ∈ K0. We want to solve the equation with α = αf ∈ A1(g, g)1 and S = 4εT

defined by

i(a)(αf ) = (−1)p(a)2f a for a, b, c,∈ g

T (πa, πb, πc) = −(−1)p(b)γ ([a, b], c).

We have the odd differential form T ∈ A3(g)1 because γ is even, invariant, bilinear.
When f (t) = −f (−t), the equation

d̂αf − 1
2

̂[αf , αf ] = 4εT (18)

is our vCDYBE.
We want to write it in a different way. We start by considering the ring of formal power

series K0[[t, u, v]]. For a monomial t iuj vk and a, b, c ∈ g, we introduce the object

(t iuj vk : γ )(a, b, c) := γ
(
(ad x)i(a), [(ad x)j (b), (ad x)k(c)]

) ∈ S(g)∗.

By linearity, we extend this definition to any φ ∈ K0[[t, u, v]] to obtain an element (φ(t, u, v) :
γ )(a, b, c) ∈ S(g)∗. It is easy to see that if φ is symmetric in t, u, v then (φ(t, u, v) : γ ) is
an antisymmetric, even, 3-linear form on g with values in S(g)∗. In particular, by lemma 2.1
it gives an odd differential 3-form (φ(t, u, v) : γ )x ∈ A3(g)1 such that

(φ(t, u, v) : γ )x(πa, πb, πc) = −(−1)p(b)(φ(t, u, v) : γ )(a, b, c) for a, b, c ∈ g.

Remark 6.2. T (πa, πb, πc) = (1 : γ )x(πa, πb, πc).

Lemma 6.2. Let �f (t, u) = 2
(

f (t + u)−f (u)

t
+ f (t + u)−f (t)

u

)
. We have(

d̂αf − 1
2

̂[αf , αf ]
)

= (�f (u, v) + �f (t, v) + �f (t, u)− 4(f (u)f (v) + f (t)f (v) + f (t)f (u)) : γ )x.

Proof. Let a, b, c ∈ g. By definition we have

(d̂αf )(πa, πb, πc)

= γ
(
a, dαf (πb, πc)

)
+ (−1)p(πb)p(πa)γ

(
b, dαf (πa, πc)

)
+ (−1)p(πc)p(πa+πb)γ (c, dαf (πa, πb)).

As dαf (πb, πc) = i(b)i(c)(dαf ), lemma 4.1 gives

γ (a, dαf (πb, πc)) = (−1)p(πb)γ (a, (�f (t, u) : [b, c])x)

≡ (−1)p(πb)(�f (u, v) : γ )(a, b, c).

We get that

(d̂αf )(πa, πb, πc)

= (−1)p(πb)(�f (u, v) : γ )(a, b, c) + (−1)p(πb)p(πa)+p(πa)(�f (u, v) : γ )(b, a, c)

+ (−1)p(πc)p(πa+πb)+p(πa)(�f (u, v) : γ )(c, a, b)

= −(−1)p(b)(�f (u, v) + �f (t, v) : γ )(a, b, c)

+ (−1)p(πa+πb)p(πc)+p(πa)+p(c)p(a)+p(c)p(b)(�f (t, u) : γ )(a, b, c)

= (−1)p(πb)(�f (u, v) + �f (t, v) + �f (t, u) : γ )(a, b, c)

= (�f (u, v) + �f (t, v) + �f (t, u) : γ )x(πa, πb, πc).

In the last equality we use that �f (u, v) + �f (t, v) + �f (t, u) is symmetric in t, u, v.
In an analogue way we compute ̂[αf , αf ](πa, πb, πc): it is sufficient to replace dαf by

[αf , αf ], and �f (t, u) by 4f (t)f (u). �
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In particular, this lemma and remark 6.2 give that vCDYBE (equation (18)) is the equation

(�f (u, v) + �f (t, v) + �f (t, u) − 4(f (u)f (v) + f (t)f (v) + f (t)f (u)) − 4ε : γ )x = 0.

Lemma 6.3. If φ(t, u, v) = 0 modulo t + u + v then (φ(t, u, v) : γ ) = 0.

Proof. Let ϕ ∈ K0[[t, u, v]] be a monomial. The invariance of γ and Jacobi’s identity (9)
give immediately (ϕ(t, u, v)(t + u + v) : γ ) = 0. �

Theorem 6.1. The series f ∈ K0[[t]] verifies equation (18) for all Lie K-superalgebra
equipped with an even, invariant, bilinear form, if

f (t + u) − f (u)

t
+

f (u + t) − f (t)

u
+

f (v + t) − f (t)

v
+

f (t + v) − f (v)

t

+
f (u + v) − f (v)

u
+

f (v + u) − f (u)

v

= 2
(
f (t)f (u) + f (u)f (v) + f (v)f (t)

)
+ 2ε modulo t + u + v (19)

in K0[[t, u, v]].

Recall that f (t) = −f (−t), setting v = −t − u we get

f (t + u) − f (u)

t
+

f (u + t) − f (t)

u
+

f (u) + f (t)

u + t
= f (t)f (u) − f (u)f (t + u) − f (u + t)f (t) + ε. (20)

Remark 6.3. As f (t) = −f (−t), this equation comes also from

f (t + u) − f (u)

t
+

f (t + u) − f (t)

u
+

f (v + t) − f (t)

v
= f (t)f (u) + f (t)f (v) + f (u)f (v) + ε modulo t + u + v.

In particular, as f (t) = −f (−t), vCDYBE can be written also as the equation(
f (t + u) − f (u)

t
+

f (t + u) − f (t)

u
+

f (v + t) − f (t)

v
: γ

)
x

= (f (t)f (v) + f (u)f (v) + f (t)f (u) + ε : γ )x. (21)

Lemma 6.4. Let K ⊇ Q. Equation (19) has only one solution f ∈ K0[[t]] such that
f (t) = −f (−t). When ε = 1

4 this solution is f (t) = − 1
t

+ 1
2 coth

(
t
2

) ∈ Q[[t]].

Proof. We suppose that f (0) = 0 and we evaluate equation (20) in u = 0. We get
f ′(t) = −2 f (t)

t
− f (t)2 + ε. As K ⊇ Q, this equation has only one odd formal power series

in K0[[t]] as solution. �

Theorem 6.2. Let K ⊇ Q. For any Lie K-superalgebra equipped with an even, invariant
bilinear form, the series f (t) = − 1

t
+ 1

2 coth
(

t
2

) ∈ Q[[t]] is a solution of equation (18) with
ε = 1

4 .

Remark 6.4 (The classical dynamical Yang–Baxter equation). Let K = R or K = C, g be a
finite-dimensional Lie algebra, h a Lie subalgebra of g.
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We consider a map r : h∗ → g ⊗ g such that it is analytic in an open set containing zero.
For any 1 � i, j � 3 with i �= j , we use the standard notation rij : h∗ → g ⊗ g ⊗ g (for
example, r12 = r ⊗ 1 and r23 = 1 ⊗ r). Let

CYBE(r) := [r12, r13] + [r12, r23] + [r13, r23] ∈ g ⊗ g ⊗ g.

For any a ∈ g we use the standard notation a1 = a ⊗ 1 ⊗ 1, a2 = 1 ⊗ a ⊗ 1, a3 = 1 ⊗ 1 ⊗ a.
Let {ej }j be a basis of h, we introduce (see [6])

CDYBE(r) := CYBE(r) +
∑

j

(ej )1
∂r23

∂ej

− (ej )2
∂r13

∂ej

+ (ej )3
∂r12

∂ej

∈ g ⊗ g ⊗ g.

We say that r verifies the classical dynamical Yang–Baxter equation if CDYBE (r) = 0.
Let us suppose that g is equipped with a K-valued bilinear form γ such that (g, γ ) is a

quadratic Lie algebra. We identify g and its dual g∗. The bilinear form γ defines an element
c ∈ g ⊗ g. By looking for solutions for which r − r21 is a constant multiple of c, one
obtains a modified version of the classical dynamical Yang–Baxter equation (vCDYBE) for
the antisymmetric part of r. We denote by {ei}i the basis for g such that γ (ei, ej ) = δi,j for
any i, j . Let ε ∈ K and ϕ := ej ⊗ ek ⊗ [ej , ek] ∈ g ⊗ g ⊗ g. We consider h = g. The
modified equation vCDYBE with coupling constant ε is the equation CDYBE (r̃) = εϕ, where
r̃ : g → g ⊗ g, is a function with values in the antisymmetric part of g ⊗ g.

Let f (t) ∈ K[[t]] verify f (t) = −f (−t), we consider

rγ =
∑
j,k

ej ⊗ ekγ (ej , f
ek ).

Using the properties of γ , we get that the modified equation vCDYBE for rγ is equivalent to

γ ([f c, b], f a) + L(c)(γ (f a, b)) + γ ([f b, a], f c) − L(b)(γ (f a, c))

+ γ ([f a, c], f b) + L(a)(γ (f b, c)) = εγ ([a, b], c) ∀a, b, c ∈ g.

This cyclotomic equation is equation (21) for g = g0.

Remark 6.5. Note that this cyclotomic equation makes sense because f (t) = −f (−t) and
because γ is an invariant, symmetric, even, bilinear form. In fact, this gives

γ (f (ad x)(a), b) = γ (a, f (−ad x)(b)) = −γ (a, f (ad x)(b))

γ (f a, b) = γ (b, f a)

in S(g)∗, so the formula γ (f a, b) defines an antisymmetric bilinear form on g with values
in S(g)∗. Using lemma 2.1, there exists a unique even differential 2-form ωf ∈ A2(g)0 =
Hom(S2(
g) ⊗ S(g), K)0 = Hom(S2(
g), S(g)∗)0 such that

i(a)i(b)(ωf ) = ωf (πa, πb) = γ (f a, b) ∀a, b ∈ g.

Definition 6.2. A map r solution of vCDYBE is called a dynamical r-matrix if r21 + r is
symmetric and g-invariant, r : g∗ ≡ h∗ → g ⊗ g is h invariant.

Remark 6.6. Etingof and Varchenko in [6] classify the solutions of the CDYBE when g is a
simple Lie algebra and h a Cartan subalgebra.

Alekseev and Meinrenken in [1] consider the modified equation vCDYBE with ε = 1
4 and

g a compact Lie algebra. They show that f (t) = − 1
t

+ 1
2 coth

(
t
2

)
gives a dynamical r-matrix

(they deduce it using [6]).
The functional equation (20) was found independently by Fehér and Pusztai in [7].

They give another direct proof of the fact that rγ is a solution of vCDYBE when
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f (t) = − 1
t

+ 1
2 coth

(
t
2

)
. Their proof uses the theory of holomorphic functional calculus

of linear operators.
Different proofs, not involving the functional equation (20), are given in the appendix of

[5] and in [4].

Remark 6.7. Let K = K0 be a field of characteristic zero. As theorem 6.2 is verified by any
Lie K-superalgebra, some results of [1] are valid also for a Lie K-superalgebra. In particular,
the existence of the quantization map introduced in [1] and its intertwining properties hold for
a Lie K-superalgebra. See the PhD thesis [9] for more details.
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